
Overview Annexes A “Failure criterion of wood”  
 
Introduction 
This publication is part of compilation of work of the author to a total rigorous theory, 

containing the latest developments with goal of a thesis and book. The appended articles are 

given in full as acknowledgment for the original journal publication.  

The developed exact theory is given in the appended 4 publications denoted by “A”, thus: 

vdPut A(1982), A(1993), A(2005) and A(2009). Other important derivations and applications 

are mentioned in these 3 publications. The theory in all appended publications was derived by 

T.A.C.M. van der Put, denoted by: vdPut as reference.  

In vdPut A(1982), the complete theory of the failure criterion is given, based on clear wood 

data. In vdPut A(1993), a further discussion and theoretical extension is given, based on data 

of timber, (wood with defects), focused on the essential part for design, and design rules for 

Eurocode 5. Although this last was accepted by CIB-W18 and the Eurocode 5 Committee, it 

never was implemented and also the old Norris failure criterion disappeared from Eurocode 

5, and because also all other exact calculation methods are continuously replaced by 

empirical, thus unreliable, nonsense (see e.g. vdPut D(2012a)), the Eurocode 5 now has no 

meaning any more for structural design with calculable reliability and reflects the total 

ignorance of the, by censorship excluded exact theory of the last decades of CIB-W18.  

It is always possible and necessary to apply exact theory, as only possibility to guarantee a 

right calculable reliability. Some day there will be a necessary revival of exact design, when 

Society does no longer, accept the collapse of buildings with e.g. 1138 dead and thousands of 

wounded as in Dhaka. At this moment, nearly a year after the collapse, are 38 teams 

controlling still 1500 clothing ateliers and register everywhere visible overloading by far too 

thin columns and beams at the wrong places. This confirms the fact that collapse certainly 

can not be caused by inferior material and overloading, but only is possible by many, on all 

levels, interrelated fundamental faults of design, due to total absence of knowledge of exact 

theory by the current generation. Probably, the denial of responsibility for this, leads to denial 

of the possibility of exact theory as determining law of nature. But, as scientist, it is a duty to 

base this opinion on study of e.g. the here given theory and on discussion with the author. For 

my last, about 50, theory publications there never was a reviewer who discussed the content 

and did show to know what was presented and what theory necessarily was involved.  

  

A.1. Discussion of annexes A about the exact failure criterion of wood  
The exact yield or failure criterion has to be applied to make a real prediction of strength 

possible in all circumstances. By vdPut A(1982) was for the first time shown that part of the 

Tsai-Wu criterion eq.(A-1) applies to wood and may represent the exact failure criterion. This 

tensor-polynomial Tsai-Wu equation was shown to act as a polynomial expansion of the real 

failure surface. The polynomial basis, discussed in section 2.6 of A(1982), appeared to be not 

transverse isotropic, as could be expected from the layered structure and isotropic matrix, but 

appeared to be orthotropic, in accordance with the plane stress processes of fracture and flow 

at the weakest layers. For tensile failure, this evidently is due to flat initial cracks in the main 

material planes, because only the stresses in one plane are magnified by such a flat crack. For 

compression this is due to microscopic kinks and creases in the cell walls, leading to shear 

planes (called creases, shear lines or slip-lines), thus to movement in a plane. This property is 

applied as basic feature for new fracture mechanics- and local compression strength 

derivations in the appended literature: e.g. C(2011) and D(2008a).  

In A(1982), based on clear wood data, all aspects and all possible transformations are 

discussed completely. The tensor polynomial form:  
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.... 1i i ij i j ijk i j kF F F         , (A-1) 

regarded as expansion of the real failure criterion shows that not all terms are needed, 

because data fitting confirmed the following symmetry conditions. The principal directions of 

strength can be regarded to be orthogonal and therefore the odd higher order terms, ijkF , 

should be omitted and the failure surface for wood thus reduces to:  

1i i ij i jF F     (A-2)  

For reasons of energetic reciprocity ij jiF F   ( )i j  and because wood also shows to be 

orthotropic in the main planes, the interaction between the shear stresses can be disregarded 

0ijF     ( ; , 4,5,6)i j i j     and because for the same reasons of orthotropic symmetry in the 

main material planes, (axial - tangential – radial) the shear strength has to be, and is, identical 

in positive and negative direction, the odd-order terms of 6  are zero and such coupling 

between normal- and shear strength vanish: 6 16 26 0F F F   , and eq.(A-2) becomes:  

2 2 2

1 1 2 2 11 1 12 1 2 22 2 66 62 1F F F F F F              (A-3) 

For a thermodynamic real surface (i.e. positive strain energy) the values of: iiF  must be 

positive and also the failure surface cannot be open-ended. This gives the restriction: 
2

ii jj ijF F F  (no summation convention), thus in eq.(A-3): 2

11 22 12 0F F F  .  

( 2

11 22 12 0F F F   = hyperboloid and 2

11 22 12 0F F F  is parabolic; both open ended curves).  

It was shown, for the first time, in A(1982), that the second-degree tensor-polynomial 

represents initial “flow,” of wood, which represents the orthotropic extension of the isotropic 

critical distortional energy criterion, providing the necessary basis for exact solutions 

according to limit analysis. Because an isotropic matrix of a material may sustain large 

hydrostatic pressures without yielding, yield depends on a critical value of the distortional 

energy. The exact derivation of this principle is given in A(2009) based on linear mapping. In 

A(1982), section 2.1.2, this derivation was based on the application of pre-stress in such a 

way that isotropic symmetry occurs in the resultant effective stresses, making the use of the 

isotropic critical distortional energy equation possible. At the so obtained energy, the energy 

of the pre-stress was subtracted to obtain the real critical distortional energy equation. 

It appeared empirically, that the transverse strengths, (compression, tension and shear in any 

direction) with e.g. the peculiar behavior of the off-axis compression strengths with a 

minimal strength at 060 , given by Fig.6 of A(1982), are precisely described by the second 

order polynomial, without need of higher order terms. By Fig. 9 of A(1982), (given below) is 

shown that after initial flow in compression, hardening occurs and after some equal amount 

of plastic strain at hardening (in all directions), the difference between the off-axes strengths 

has disappeared and the strength behavior is isotropic. At this point, where empty spaces in 

 
Fig 9 of A(1982). Hardening to the isotropic state in transverse direction 
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wood are pressed away, the isotropic strength of the isotropic matrix becomes determining. 

At the failure state, wood thus can be regarded as an isotropic material, reinforced in axial 

direction. This is applied in C(2011) for the exact derivation of the Wu- mixed mode fracture 

equation. Initial flow, according to the orthotropic second order polynomial, also applies for 

the longitudinal strengths what leads to failure when the test or test setup becomes instable at 

this initial flow. This applies e.g. for the off-axis tensile tests. When the test remains stable 

after initial flow, hardening is possible. The example, discussed in A(1982), shows hardly 

hardening in the tangential plane of the oblique-grain compression test, project B, while 

project A, in the radial plane, shows an increasing shear strength with increasing compression 

stress normal to this plane (see fig. 10 of A(1982), below). For that case is, as polynomial 

description, the next coupling term between 2  and 6  needed (what appeared to be 

sufficient) and because the shear strength in the main planes is independent of the sign of the 

stress, odd terms in index 6 (p.e. 6 16 26, ,F F F ) have to disappear and a higher order term 266F  

is needed, and the failure surface thus becomes for the plane fracture mechanics problem 

1 0  , in the radial plane:  

2 2 2

2 2 22 2 66 6 266 2 63 1F F F F           (A-4) 

 
Figure 10 of A(1982) Combined shear-tension and shear compression strengths. 

 

Eq.(A-4) can be written, with ', ,Y Y S  as compression-, tension- and shear strengths: 
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With: 2

2663 'c F Y S .  (A-6) 

When 1c , eq.(A-5) becomes: 6 2/ 1 /S Y    , or: 
2

6 2 1
S Y

   
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  (A-7) 

which is the mixed mode Wu- equation of fracture mechanics, showing that micro-crack and 

macro crack extensions are the same. The exact derivation of this equation, in orthotropic 

stresses, is given in C(2011), Section 2.3, eq.(2.36): 
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because by the transformation from elliptical to circular coordinates: 0 02 /r c  . Critical 
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small crack propagation occurs at a critical crack density, when the crack distance is about 

the crack-length and is thus independent of the crack length, which can be chosen to have a 

standard value (depending on quality) and the second part of eq.(A-8) can be written as:  
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      (A-9) 

thus in deterministic ultimate strength values: 2 6,c c  .  

The value of 266F  in eq.(A-6), depends on the stability of the test, thus is not a constant, but a 

hardening factor, determining the amount of hardening at the, by the testing instability 

determined, ultimate state. This is shown e.g. by the following Fig. 4 of A(1993), where 

parameter values according to more stable torsion tube tests, are used to predict the oblique 

grain compression strength values. Because of more hardening, the peak of 1.1, at 10
0
, is 

predicted, which can not be measured in the oblique grain test, due to earlier instability of the 

test setup.   

 
Fig. 4 of A(1993). Uniaxial oblique grain strength.  

 

Determining for compression failure is the microscopic kinks formation in the cell walls, 

which is a buckling and plastic shearing mechanism. The kinks multiply and unite in kink-

bands and kink-planes at fiber misalignments. Known by everyone is the slip-plane of the 

prism compression test showing a horizontal crease (shear line,  

 

 
Fig. 1. Kinkband formation, where K is the plastic shear strength 

of the matrix (e.g. 11.3 Mpa),  015   is the misalignment (e.g. 

for Spruce) y  is the longitudinal shear yield strain.   
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slip line) on the longitudinal radial plane, while on the longitudinal tangential plane the 

crease is inclined at 45
0
 to 60

0
 (depending on the species) with the vertical axis.  For this bi-

axial compression fracture, the same fracture mechanism occurs as for combined mode I-II 

fracture, discussed above. The shear loading of the micro-cracks is now due to misalignment 

component of the normal stress. Eq.(A-3) now becomes with 12 6 0F    :  

2 2 2

1 1 2 2 11 1 22 2 112 1 23 1F F F F F              or: 
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  (A-10) 

Above eq.(26) of A(2009), is eq.(A-10) closely approximated to eq.(A-11) below: 
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  (A-11) 

when the hardening constant 2

1123 '( ')c F Y X approaches one: 1c  .  

The parabolic Eq.(A-11) is shown in Fig. 5 of A(1993), given below, by the data points of the 

longitudinal compression side and is shown as fitted to this theoretical equation in fig. 6 of 

A(1993). As mentioned, this hardening of the torsion tube tests, is not found in the uniaxial 

oblique grain tests, which is earlier unstable, thus showing less hardening. Regarding the 

other third order hardening constants, it is to be expected that 166 0F   for clear wood because 

1  is in the same direction as the flat crack and thus not influenced by that crack. This also 

applies for 122F , which therefore also is zero and has no physical meaning and indeed is not 

present in fig. 5 below. Determining is 112F , representing hardening by kinking and slip-plane 

formation. According to fig.5 below is 112F  zero at the longitudinal tension side.  

 

 
Fig. 5 of A(1993). Initial yield for 12 0F   and 6 0    

 

In A(1993) is shown that all data may show a different amount of hardening at failure. 

Therefore, meaningless higher order terms are necessary to give one equation to collect all 

data. Because tests in longitudinal compression show other and more hardening than tests in 

tension, separate data fits for longitudinal tension and longitudinal compression are 

necessary, as given by eq.(31) and eq.(32) of A(2009). For the parameter estimation by the 

uniaxial oblique grain tests, is in eq.(18) of A(2009):  

12 122 166 0F F F   ;  2

1123 0.9 / (( ') ')F X Y ;  2

2663 0.9 / ( ')F S Y  
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Because hardening is not always guaranteed in real structures and test situations, the initial 

flow criterion for the Codes has to be: 
2 2 2

6 1 1 1 2 2 2

2
1

' ' ' 'S X X XX Y Y YY

      
         (A-12)  

 

A.2. Some conclusions   
It was for the first time shown in A(1982) that the tensor polynomial failure criterion applies 

to wood. Also is shown, that the fourth-degree and higher-degree polynomial terms have no 

physical meaning and thus are zero. Only the third-degree polynomial part is identical to the 

real failure criterion, while the third degree terms represent deviations from orthotropic 

behavior and represent post initial flow hardening behavior, which numerical value depends 

on the stability of the test specimen and testing device.  

It also was for the first time shown that the second-degree part of the tensor polynomial is 

identical to the in A(1982) and A(2009) derived orthotropic extension of the isotropic critical 

distortional energy criterion for initial yield. The third degree polynomial hardening terms of 

the failure criterion are shown to represent the, in C(2011) theoretical derived, Wu-mixed-

mode I-II fracture equation, showing hardening to be based on hindered micro-crack 

extension and micro-crack arrest. This also applies for slip plane formation of compression 

fracture, which is a variant of shear failure according to the mixed mode Wu-equation. 

Important is the conclusion that the failure criterion shows that micro-crack extension is 

always involved in fracture processes. The derivation of the new fracture mechanics theory, 

is therefore based on micro-crack extension. In C(2014) is the exact derivation given of the 

geometric correction factor for small crack extension towards the macro-crack tip. This 

correction factor appears to be numerical the same as for macro-crack extension. 

For uniaxial loading, the failure criterion can be resolved in factors, leading to the derivation 

of extended Hankinson equations. This allows the relations between the constants of the total 

failure criterion to be elucidated as is necessary for data fitting of this criterion to provide a 

simple method to determine all strength parameters by simple uniaxial, oblique grain 

compression and tension tests. Based on this, the numerical failure criterion is given with the 

simple lower bound criterion for practice and for the codes in e.g. A(2009).  

Because in limit analysis, the extremum variational principle applies for initial “flow” and 

thus the virtual work equations apply, the variations are sufficient small to get a linear 

irreversible process, and then the plastic potential function exists, which is identical to the 

yield function at flow, and for which the normality rule applies. This thus applies for the 

derived orthotropic critical distortional energy criterion, making complete exact solutions 

possible. The absence of coupling term, 12F =0, between the normal stresses means that the 

reinforcement takes only normal loading, causing the matrix to carry the whole shear loading.  

Failure of the matrix occurs before flow of the reinforcement. This follows e.g. from Balsa  

 

  
Fig. 1 of C(2011) - Shear failure by the asymmetric four point bending  

 test with small center-slit. (Sketch after a photo)  
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wood, which is highly orthotropic, but shows the isotropic ratio of the critical stress 

intensities / 2IIc IcK K   of the isotropic matrix material at failure at initial flow. For dense, 

strong, (thus with a high reinforcement content) clear wood, this is shown by the oblique 

crack extension, according to Fig. 1 of C(2011), showing the isotropic oblique angle at the 

start of shear crack extension, and thus shows the matrix to be determining for initial failure. 

It is therefore a requirement for an exact orthotropic solution, applicable to wood, to satisfy 

the equilibrium condition for the total orthotropic stresses, as well as for the isotropic solution 

of the stresses in the matrix at failure. This last condition is not satisfied in all other existing 

fracture mechanics models.  

Early failure of the matrix causes stress redistribution of mainly shear with compression in 

the matrix and increased tensile stress in the fibres. The measured negative contraction for 

creep in tension indicates this mechanism. As in reinforced concrete, truss action is possible, 

as noticeable by the strong negative contraction coefficient (swelling instead of contraction) 

in the bending tensile zone of the beam. Failure in compression is determined by the 

difference in the principal compression stresses. Thus the maximal shear stress or Tresca 

criterion applies. The necessary validity of the Tresca criterion is confirmed by D(2008b) and 

D(2008a), where the strongly increased (sixfold) compression strength under the load of 

locally loaded blocks and the increased embedding strength of dowels is explained by the 

construction of the equivalent slip line field in the specimen based on the Tresca criterion. In 

addition, the many apparent contradictions of the different investigations are explained by 

this theory. This strong increase of the compression strength is due to confined dilatation by 

real hardening (when the empty spaces in wood are pressed away)..  

The existence of an isotropic matrix in wood (lignin with branched hemicellulose) follows 

not only from material analysis, but also, as mentioned, from the high compression strength 

at confined dilation with the absence of failure by triaxial hydrostatic compression, (what is 

not the case for orthotropy, because then, for equal triaxial stresses, the strains then are not 

equal and yield remains possible).  

Plastic flow in wood starts with propagation of empty spaces by segmental jumps, just as the 

dislocation propagation in steel and the possibility should be accounted that there is no 

change in density at initial flow (as for steel) and the plastic incompressibility condition 

should be accounted as possibility, and as follows from the normality rule of flow in 

combination with perfect plasticity, the Tresca criterion (maximal shear stress criterion) then 

also should apply. The Tresca criterion should be the inscribed polygon within the von Mises 

criterion and thus provides a lower bound calculation of the strength of the von Mises wood 

material. By the dissipation according to the incompressibility condition, the minimum 

energy principle is followed providing the lowest possible upper bound and therefore the 

closest to the exact flow criterion.  

Limit analysis therefore has to be based on incompressibility and the Tresca criterion.  

It has to be stressed for the virtual work equations of limit  analysis that neither the chosen 

equilibrium, nor the compatible strain and displacement set need not be the actual state, nor 

need the equilibrium and compatible sets to be related in any way to each other. 
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